A Hands-On Introduction to Eye Tracking

Dorotea Bevivino & Martial Foegel

RJCP 2025 November 5, 2025

EFL

Eye tracking: What it is?

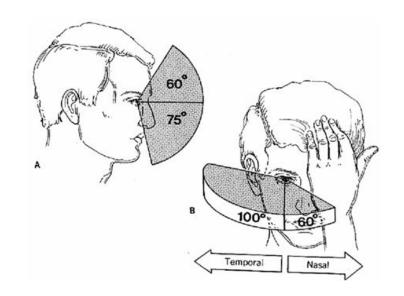
What is eye tracking?

- The process of (and the technology for) monitoring and recordings eye movements in real-time
- Online experimental technique

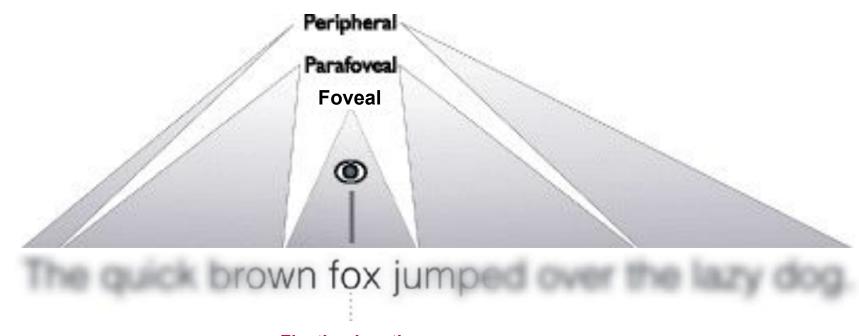
What does it measure?

- Eye position
- Eye movements
- Pupil size

What is an eye tracker?

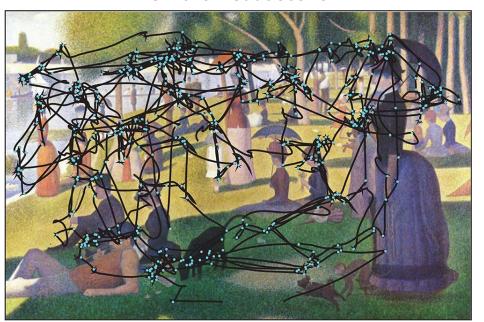

Device for recording eye movements to determine the point of gaze

Eye movements: What are they?

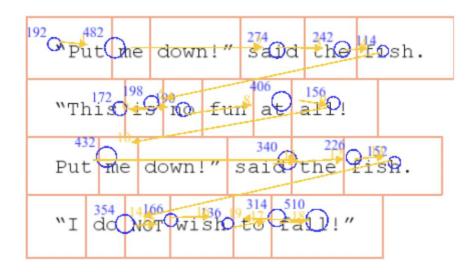

- Several types of eye movements
- For information processing
 - Saccades: fast eye movements (up to 700%s)
 - Fixations: eye holds (relatively) still
 - even during fixations, small movementse.g. blinks, drifts: small slow movements away from the fixated point

- Anatomy of the eye
- Visual field: visual environment projected onto the retina when fixating on a point

- NO all-around vision
 binocular vertical vision: ~140°
 binocular horizontal vision: ~100°
- NO uniform visual acuity 3 areas:
 - Fovea: sharp vision
 - Parafovea: not so clear vision
 - Peripheria: blurry vision


The visual field when reading

Fixation location (maximal visual acuity)


We need to move our eyes to perceive all the details of a visual input

On the visual scene

We need to move our eyes to perceive all the details of a visual input

On a text

We need to move our eyes to perceive all the details of a visual input

Our brain later integrates information from multiple eye movements and fixations. So that we perceive one coherent visual image.

Eye movements: Why observe them?

"Eye-mind" hypothesis: We fixate on things we are mentally paying attention to

- X NO direct measure of neural processes
- X NO direct theoretical implication
- ✓ Indirect measure of cognitive processes by using info on where and when readers/listeners move their gaze while processing input
- NOT a perfect link: eye movements are discrete! Plus, lag between attention and fixations

Eye movements: Why observe them for language research?

Eye movements in language processing

- Indirect measure of cognitive processes involved in language processing,
 with location and time of fixations reflecting stimuli processing
- Real-time information on the temporal order of stimuli processing

Eye tracking as a method

- Real-time, online technique
- Implicit measure of processing vs. interpretation/understanding (e.g., discrimination task, ratings)

Eye movements: Why observe them for language research?

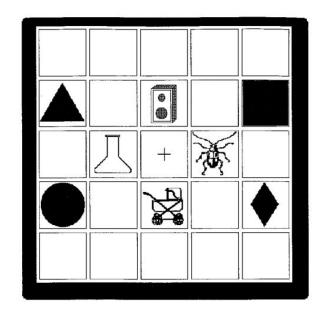
Eye movements in language processing

- Indirect measure of cognitive processes involved in language processing,
 with location and time of fixations reflecting stimuli processing
- Real-time information on the temporal order of stimuli processing

Eye tracking as a method

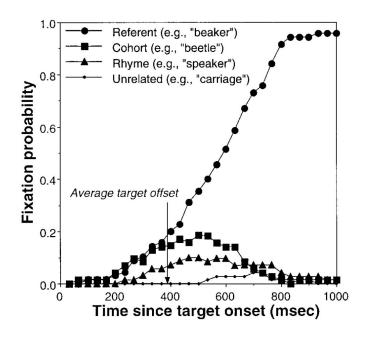
- Real-time, online technique
- Implicit measure of processing vs. interpretation/understanding (e.g., discrimination task, ratings)

X Data collection can be time consuming


X Data can be noisy

- √ High temporal resolution
- ✓ Natural, non-invasive technique
- √ Often ecological paradigm (e.g., reading)
- √ Can test some special populations
 (e.g., speakers of mostly-spoken languages, children)
- √ Can be paired with other techniques (e.g., EEG)

Eye tracking: How to use it for language research?


- Visual world paradigm (VWP)
 - Participants listen to words/sentences
 - While looking at visual scene on the screen (pre-familiarized)
 - PRO: No need for literacy skills

An example of VWP: Spoken word recognition

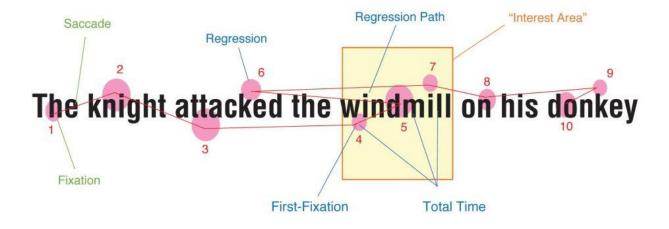
"Pick up the beaker; now put it below the diamond"

Cohorts and rhymes are activated

- → both compete for lexical activation
- → evidence for TRACE vs. cohort models

Eye tracking: How to use it for language research?

- Visual world paradigm (VWP)
 - Participants listen to words/sentences
 - While looking at visual scene on the screen (pre-familiarized)
 - PRO: No need for literacy skills
- Eye-tracking-while-reading task
 - Participants read sentences on the screen
 - Reading times of a specific word/group of words (area of interest) in different conditions


An example of ET-while-reading: Garden-path processing

- Wherever Alice walks her dog men follow.
- Wherever Alice walks her dog will follow.

Garden-path sentences: sentences violating typical parsing strategies

- → more regressions out of the critical region (re-reading to re-analyze)
- → index of syntactic integration difficulty

Reading time measures

Hands on!

Eye tracker: What is it?

- Device for recording eye movements to determine the point of gaze
 - Non intrusive
 - Video-based system
 - Pupil Center Corneal Reflection (PCCR) method:
 camera records corneal and pupil reflections generated by IR light,
 and tracks eye location based on these reflections

Eye tracker: Where is the camera?

Remote camera (table- or monitor-mounted)

SR Research EyeLink 1000 Plus

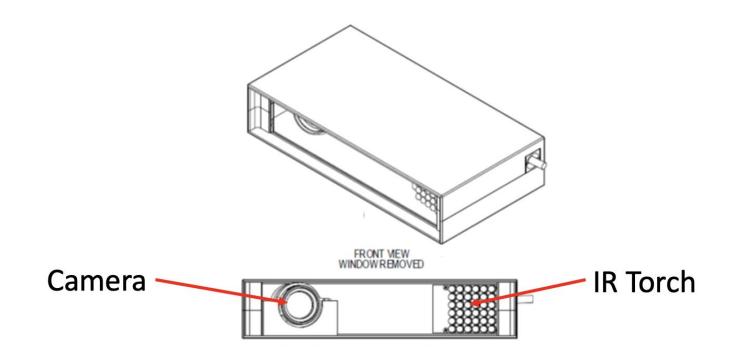
Tobii Pro Fusion

Tower-

SR Research EyeLink 1000

SMI HiSpeed

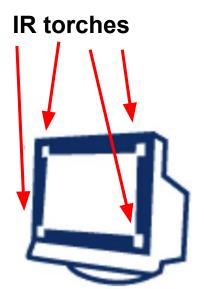
or head- mounted



SMI Eye Glasses

SR Research EyeLink II

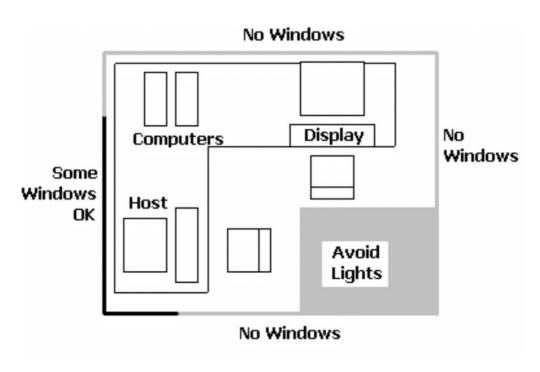
Inside the EyeLink Portable Duo



Inside the EyeLink II

Head Camera

to compensate for head movements

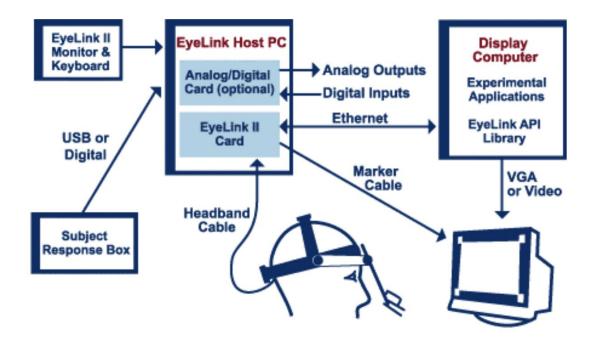

Two Eye Cameras

to record eye movements (record only dominant eye!)

How to: Technical setup

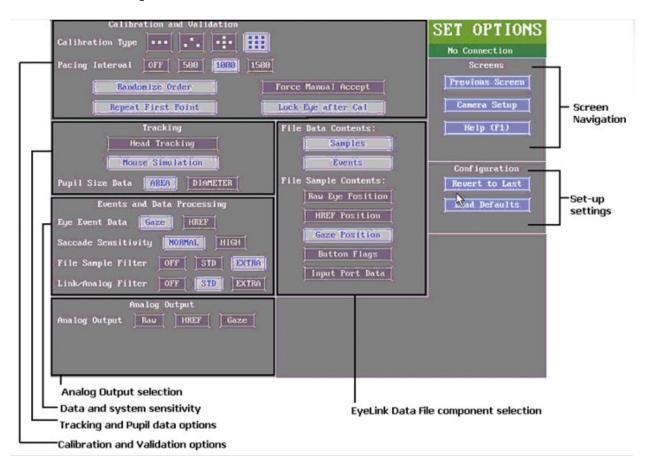
- Where? The lab
 - Eye lab
 - Lab in field! (e.g., studies on Mayan languages, Tagalog, in schools)

How to setup the lab

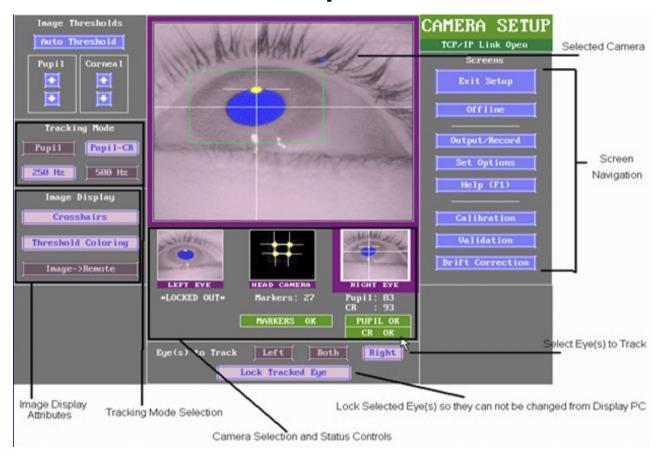


- □ Avoid natural light!
- Irrelevant the kind of lighting (the camera does not operate in the visible light spectrum)
- Avoid visual clutter

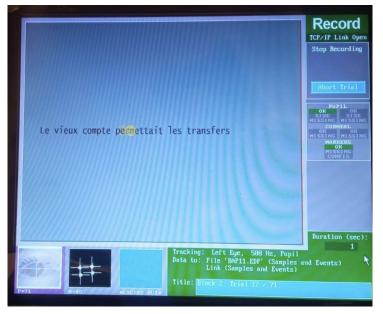
How to: Technical setup


- Where? The lab
 - Eye lab
 - Lab in field! (e.g., studies on Mayan languages, Tagalog, in schools)
- What? The equipment
 - Eye tracker (LLF: SR Research EyeLink II and EyeLink Portable Duo)
 - Host PC experimenter
 - Display PC participant

How to: Eye tracker setup

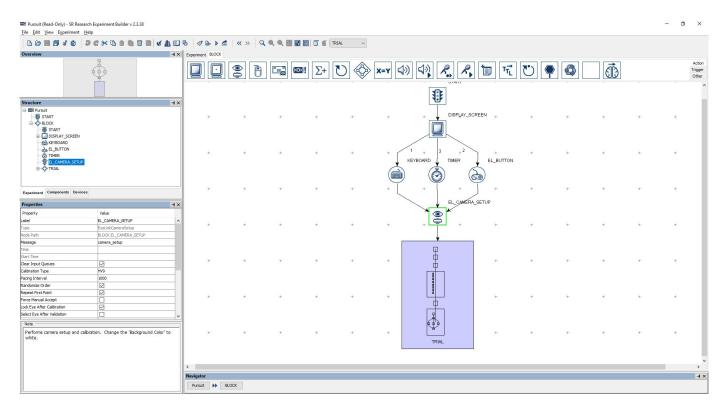


How to: Host PC options



How to: Host PC camera setup

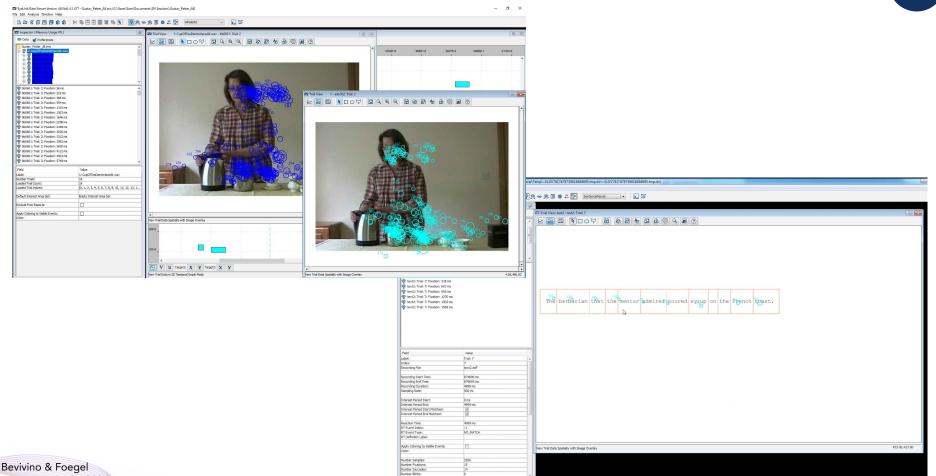
How to: Host PC while recording



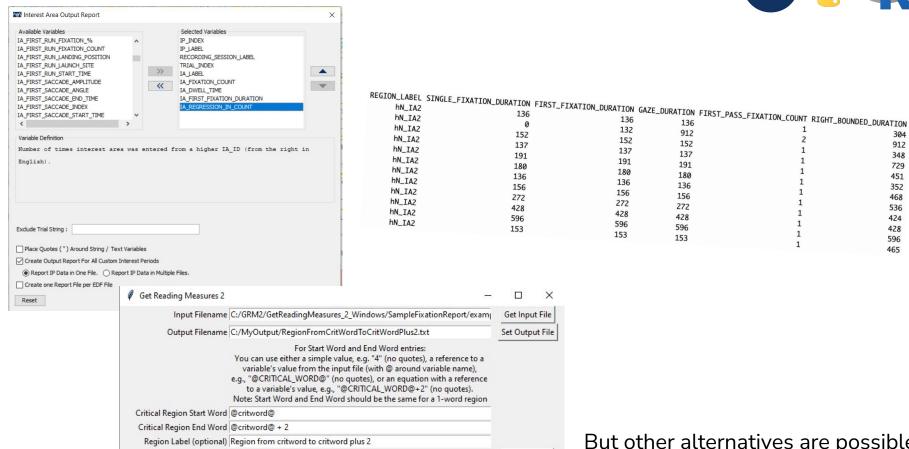
How to: Technical setup

- Where? The lab
 - Eye lab
 - Lab in field! (e.g., studies on Mayan languages, Tagalog, in schools)
- What? The equipment
 - Eye tracker (LLF: SR Research EyeLink II and EyeLink Portable Duo)
 - Host PC experimenter
 - Display PC participant
- How? The software
 - To code: SR Research Experiment Builder but other alternatives are possible!
 - To visualize and clean data: SR Research Data Viewer, or in-house software
 - To extract measures: Get Reading Measures 2 (GRM2) app, or other scripts/R packages

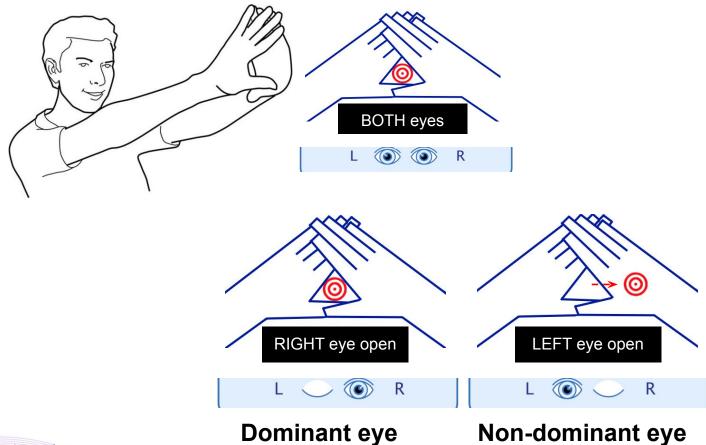
How to code: SR Research Experiment Builder



But other alternatives are possible!

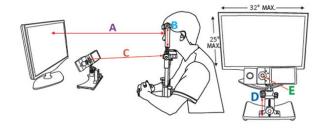

How to visualize and clean: SR Research Data Viewer

How to extract measures: GRM2

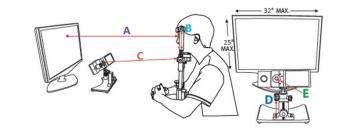

But other alternatives are possible!

Process Data

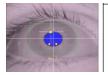
How to collect data: Steps


- Demographic data and informed consent
- Overall explanation
 - Eye-dominant test
 - □ Participant setup (head-mounted eye tracker setup: fitting the headband; setting head camera; setting eye camera)
 - ☐ Camera setup: focus and threshold
 - Calibration and validation
 - Recording
 - (Drift correction)
 - (Re-calibration)
- Debrief
- Compensation

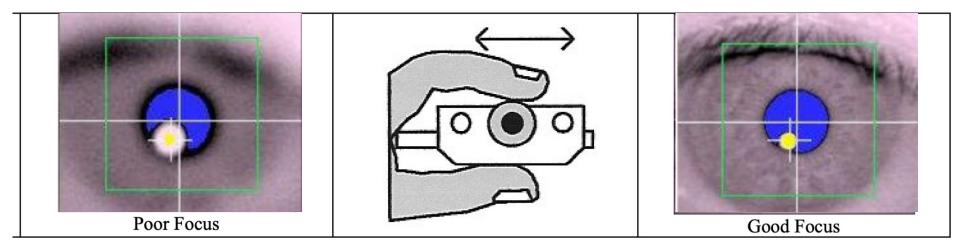
Eye dominance testing


How to collect data: Three key factors

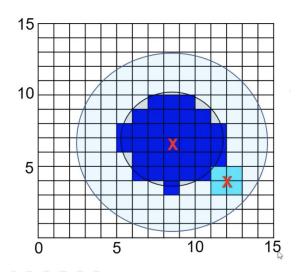
- Participant setup
 - Comfortable
 - Distance/alignment
 - ☐ Sitting still
 - No visual clutter/distractors
 - ☐ Glasses?
 - ☐ Make up?


How to collect data: Three key factors

- Participant setup
 - Comfortable
 - ☐ Distance/alignment
 - ☐ Sitting still
 - No visual clutter/distractors
 - ☐ Glasses?
 - ☐ Make up?
- Camera setup
 - (Camera position, in some systems)
 - ☐ Focus
 - ☐ Threshold

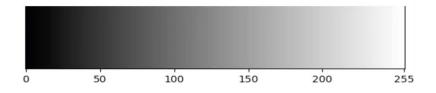


Eye camera focus

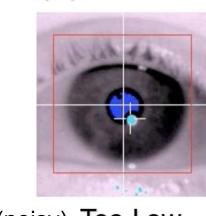


Eye camera threshold

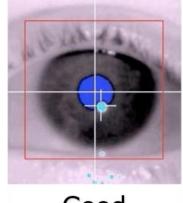
The Eyelink camera is a digital camera: it has pixel

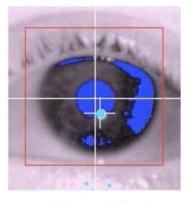

We need to minimize the ambiguity on what's pupil and what's not

More data \rightarrow more reliable estimate \rightarrow less noise



Pupil and CR thresholds work on grayscale values


We need to tell the system how 'black' (or 'white') something has to be to be considered pupil (or not)

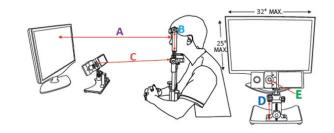

Eye pupil threshold

Good

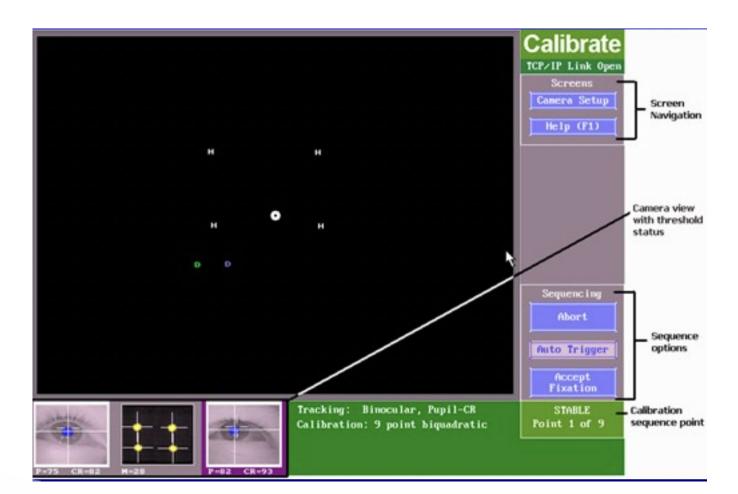
Too High (shadows)

How to collect data: Three key factors

- Participant setup
 - Comfortable
 - Distance/alignment
 - Sitting still
 - No visual clutter/distractors
 - ☐ Glasses?
 - Make up?
- Camera setup
 - (Camera position, in some systems)
 - Focus
 - Threshold

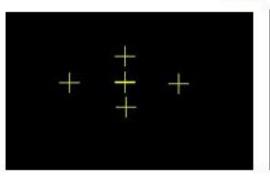


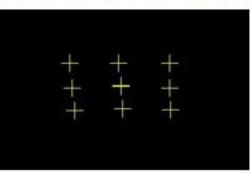
- Calibration/Validation
 - Precision AND accuracy
 - ☐ The single most important thing in your experiment

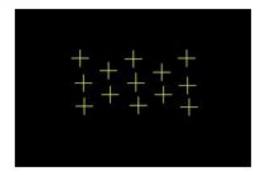

Calibration

To determine the correspondence between the pupil position in the eye camera image and the fixation position on the screen

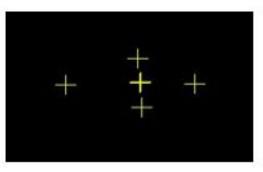
- ☐ Different grids, depending on the task and stimuli presentation
- Manual or automatic

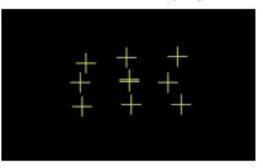


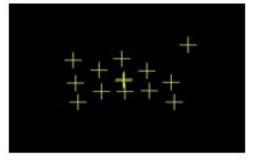

Calibration from the Host PC



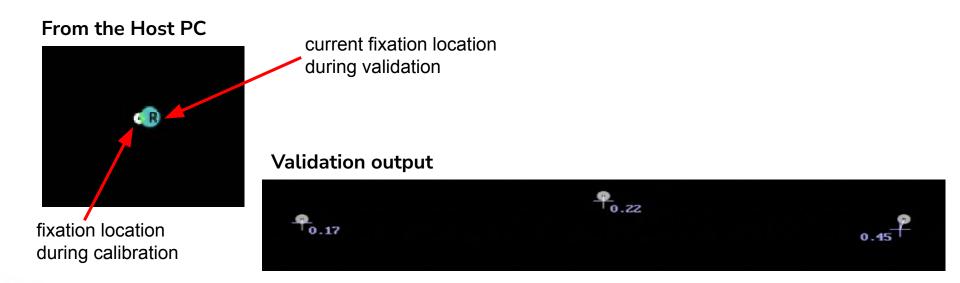
Calibration output


Good Calibration models (symmetrical)



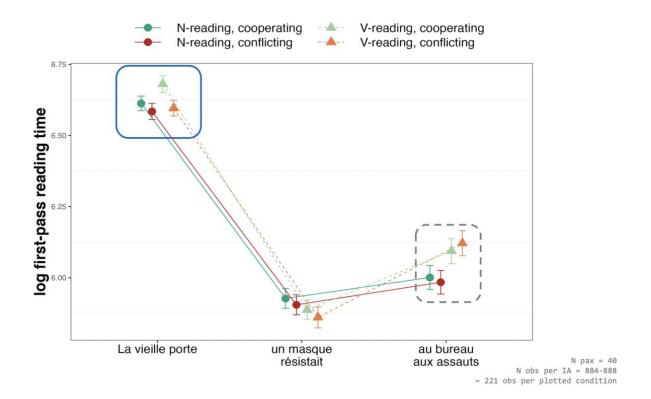


Poor Calibration models (asymmetrical)

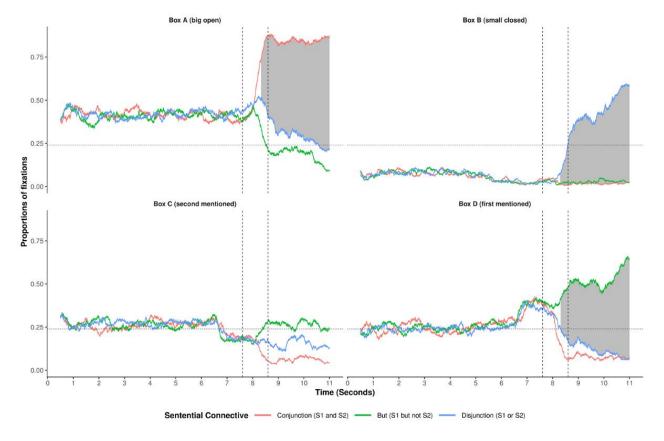


Validation (and drift correction)

It checks the degree of error between the initial calibration and a recalibration on the same points


- Same principle applies to the **drift correction** before experimental trials

In a perfect world, the degree of error between those measures would be 0. In practice, the trick is to minimize the error as much as possible (for reading, below 0.5, or even 0.3)


How to plot: An example of ET-while-reading results

Prosodic priming experiment

How to plot: An example of Visual World Paradigm

Online processing of spoken language

Resources for SR Research devices and software

- Website: http://sr-research.com/
- Forum: https://www.sr-research.com/support/
 - Getting started: especially useful the Learning Resources section, with FAQ, experiment templates, tutorials, etc.
 - Going deeper: troubleshooting specific problems, custom scripts, debugging, etc.
- Documentation (everything is available in the Learning Resources> Manual/Documents section of the forum):
 - EveLink Portable Duo manual
 - EyeLink II manual
 - Software manuals
- Youtube channel with **plenty** of video tutorials: https://www.youtube.com/@SRResearch/featured
 - All available webinars are listed here, where you can also download the slides: Webinars: Table of Contents
 - Experiment Builder video tutorial series is indexed here: https://www.sr-research.com/support/thread-32.html
 - Data Viewer video tutorial series is indexed here: https://www.sr-research.com/support/thread-31.html
 - o and many other videos are available on the channel!

Basic references for eye tracking in language research

Eye-tracking-while-reading

Schotter & Dillon (2025). A beginner's guide to eye tracking for psycholinguistic studies of reading. *Behav Res* 57, 68. https://doi.org/10.3758/s13428-024-02572-4

Staub & Rayner (2007). Eye movements and on-line comprehension processes. In Gaskell (ed.), *The Oxford Handbook of Psycholinguistics*. https://doi.org/10.1093/oxfordhb/9780198568971.013.0019 (available https://doi.org/10.1093/oxfordhb/9780198568971.013.0019

Visual World Paradigm

Huettig, Rommers, & Meyer (2011). Using the visual world paradigm to study language processing: A review and critical evaluation. *Acta psychologica*, 137(2), 151–171. https://doi.org/10.1016/j.actpsy.2010.11.003

Ito (2024). Phonological prediction during comprehension: A review and meta-analysis of visual-world eye-tracking studies. *Journal Memory & Language*, 139. https://doi.org/10.1016/j.jml.2024.104553

Zhan, L. (2018). Using Eye Movements Recorded in the Visual World Paradigm to Explore the Online Processing of Spoken Language. *Journal of Visualized Experiments : JoVE*, 140, 58086. https://doi.org/10.3791/58086

Slim & Hartsuiker (2023). Moving visual world experiments online? A web-based replication of Dijkgraaf, Hartsuiker, and Duyck (2017) using PCIbex and WebGazer.js. *Behav Res* 55, 3786–3804. https://doi.org/10.3758/s13428-022-01989-z

Pupillometry

Overview: Schmidtke (2018); Sirois & Brisson (2014)

Best practices: Winn et al. (2018); Mathôt & Vilotijević (2023)

References of statistical methods for eye tracking

- Barr, D. J. (2008). Analyzing 'visual world' eyetracking data using multilevel logistic regression. *Journal of Memory and Language*, *59*(4), 457-474. https://doi.org/10.1016/j.jml.2007.09.002
- Ito, A., & Knoeferle, P. (2023). Analysing data from the psycholinguistic visual-world paradigm: Comparison of different analysis methods. *Behavior Research Methods*, *55*(7), 3461-3493. https://doi.org/10.3758/s13428-022-01969-3
- Mirman, D., Dixon, J. A., & Magnuson, J. S. (2008). Statistical and computational models of the visual world paradigm: Growth curves and individual differences. *Journal of Memory and Language*, 59(4), 475-494. https://doi.org/10.1016/j.jml.2007.11.006
- Oleson, J. J., Cavanaugh, J. E., McMurray, B., & Brown, G. (2017). Detecting time-specific differences between temporal nonlinear curves: Analyzing data from the visual world paradigm. *Statistical methods in medical research*, 26(6), 2708-2725. https://doi.org/10.1177/0962280215607411
- Reinisch, E., & Mitterer, H. (2021). Phonetics and Eye-Tracking. In R.-A. Knight & J. Setter (Éds.), *The Cambridge Handbook of Phonetics* (1^{re} éd., p. 457-479). Cambridge University Press. https://doi.org/10.1017/9781108644198.019
- Romano, J. P., & Tirlea, M. A. (2020). Permutation Testing for Dependence in Time Series (No. arXiv:2009.03170). arXiv. http://arxiv.org/abs/2009.03170
- Stone, K., Lago, S., & Schad, D. J. (2021). Divergence point analyses of visual world data: Applications to bilingual research. *Bilingualism: Language and Cognition*, 24(5), 833-841. https://doi.org/10.1017/S1366728920000607

Thank you!